Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach.
نویسنده
چکیده
Wavelength-selective fluorescence comprises a set of approaches based on the red edge effect in fluorescence spectroscopy which can be used to directly monitor the environment and dynamics around a fluorophore in a complex biological system. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption band, is termed red edge excitation shift (REES). This effect is mostly observed with polar fluorophores in motionally restricted media such as very viscous solutions or condensed phases where the dipolar relaxation time for the solvent shell around a fluorophore is comparable to or longer than its fluorescence lifetime. REES arises from slow rates of solvent relaxation (reorientation) around an excited state fluorophore which is a function of the motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. Utilizing this approach, it becomes possible to probe the mobility parameters of the environment itself (which is represented by the relaxing solvent molecules) using the fluorophore merely as a reporter group. Further, since the ubiquitous solvent for biological systems is water, the information obtained in such cases will come from the otherwise 'optically silent' water molecules. This makes REES and related techniques extremely useful since hydration plays a crucial modulatory role in a large number of important cellular events, including lipid-protein interactions and ion transport. The interfacial region in membranes, characterized by unique motional and dielectric characteristics, represents an appropriate environment for displaying wavelength-selective fluorescence effects. The application of REES and related techniques (wavelength-selective fluorescence approach) as a powerful tool to monitor the organization and dynamics of probes and peptides bound to membranes, micelles, and reverse micelles is discussed.
منابع مشابه
Micellar Organization and Dynamics: A Wavelength-Selective Fluorescence Approach
Wavelength-selective fluorescence comprises a set of approaches based on the red edge effect in fluorescence spectroscopy, which can be used to monitor directly the environment and dynamics around a fluorophore in a complex biological system. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge o...
متن کاملOrganization and dynamics of NBD-labeled lipids in membranes analyzed by fluorescence recovery after photobleaching.
Lateral diffusion of membrane constituents plays an important role in membrane organization and represents a central theme in current models describing the structure and function of biological membranes. Fluorescence recovery after photobleaching (FRAP) is a widely used approach that provides information regarding dynamic properties and spatial distribution of membrane constituents. On the basi...
متن کاملSpecial Section: Membrane Proteins
In spite of the functional importance of membrane proteins, information on their structure and organization is lacking due to the paucity of crystal structures. In the absence of a detailed crystallographic database, approaches based on fluorescence spectroscopy have proved useful in elucidating the organization, topology and orientation of membrane proteins. This review is focussed on the appl...
متن کاملOrganization and dynamics of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: a fluorescence approach.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. NBD-labeled lipids have previously been used to monitor the organization and dynamics of molecular assemblies such as membranes, micelles and reverse micelles utilizing the wavelength-selecti...
متن کاملModulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. Since the association of the peptide in the membrane is linked with its physiological effects, a detailed understanding of the interaction of melittin with membranes is crucial. We have investigated the interaction of melittin with membranes of varying surface charge in the context of recent studies w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry and physics of lipids
دوره 122 1-2 شماره
صفحات -
تاریخ انتشار 2003